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Note on the spanwise quadrature in lifting-wing calculations 
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SUMMARY 
An improvement concerning the computational economy in lifting-wing calculations is given with applications to 
Weissinger's lifting-line theory. 

1. I n t r o d u c t i o n  

In lifting-line and lifting-surface theory the spanwise integrations are usually carried out 
with the aid of interpolation functions resulting from the theory of orthogonal polynomials 
(see e.g. [1] and [2]). The aim of the present note is to state an improvement concerning the 
computational economy for the method of [2] and to point out alternative methods to [1] 
and [2] with possible advantages in special cases. Applications to Weissinger's lifting-line 
theory will be shown. 

2.  A n a l y s i s  

Integrals of the type 

{ + 1 y(t/') 

-1 ~ - -  t/') z dr/' (1) 

and similar ones with 7(t/) representing the spanwise loading are evaluated in [2] by 
approximating Y over a half span (0 < i / <  1 or - 1 < t / <  0) in the following manner: 

m + l  

y(o) = Y ~,(O,)h,(O), (2) 
i = 1  

where t /=  cos 2 0. From the theory of orthogonal functions optimal stations are derived 

iTc 
0 i -  2 m + 3 '  i =  1,2 . . . . .  r e + l ,  (3) 

and also corresponding interpolation functions (so-called station functions) 

m 

- Z sin (2/.z + 1),~ sin (2/1 + 1 )~ hi(3) 2m + 3 .=o (4) 
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which are equal to one at 3 i and vanish at all other 3j. Using this interpolation procedure for 
all integrals in lifting-surface theory like eq. (1) or other type have been evaluated to 

generate the coefficient matrix for the unknowns ~i = y(3i). The disadvantage of this 
treatment is the fact that each coefficient consists of a sum due to the summation in eq. (4). 
Therefore the computer time for the generation of the matrix increases proportional to 
(m + 1)3, which implies considerable expense for large values of m in contrast to the method 
of Multhopp [1]. 

To avoid this disadvantage it is attempted now to utilize a summation form for the station 
functions (instead of eq. (4)) 

sin(2m + 1)0 i sin(2m + 3)3 
hi(3) = c o s  2 3 - c o s  2 3 i 2m + 3 (5) 

which is also given in [2] but not used for evaluation of the integrals. When eqs. (2) and (5) 
are introduced in eq. (1), the resulting integrations can be carried out analytically after 
decomposing the integrand into partial fractions and applying addition formulas for 
circular functions. It follows then for a first part of the integral (1) at the stations t G (t/, > 0): 

f~ 7(~l')dq' m+l 
(~ 7~7) 2 - i= lZ ylbvi (6) 

with the coefficients 

bvi ~- 

( - 1 )  m 

sin(2m + 1)3i FCOS 2 3 v -~- (2m + 3)I,,+1(3~) 

2m + 3 L cos 2 3~ - cos 2 3 i + 

1 lm+2(3i)--Im(oqi) 1 Im+2(3v)--Im(Ov) 1 
+ 2 (COS 2 3 i -- COS 2 3~) 2 2 (C--~-S 2 ~ ~ C0~-~)2-_]' 

(6a) 

except for b~. The integrals Ik(3 ) and their recurrence relations are already given in [2]. 
Treating the special coefficient b~ in a similar manner, we can express it by introduction of a 
further integral type also calculable by a recurrence relation. However, the utilization of the 
summation form (4) in this special case does not imply an essential disadvantage and is 
preferred in the following. Hence the coefficient bvv reads (see also [2]): 

4 m ( ~  ) 
b ~ =  2 m + 3  .~o sin(2#+ 1)3v v (2p+ 1)I.(3v) . (6b) 

Similarly we get (for t/v > 0 and symmetric loading) 

f~ 7(~l,)drl, f~ 7(rl,)d q, m+l - - E (7) 

with 
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( -  1)" 
sin (2m + 1)3~ 1-cos 2 0~. + (2m + 3)J,, + 1(3~) 

b~ 2m + 3 [ cos 2 3~ + cos 2 3~ F 

1 Im+2(Oi)--lm(oqi) 1 Jm+2(~9,,)-Jm(O~) 
+ 2 (COS 2 0,,+COS 2 O,) 2 t- 2 (C~2S2~+c-~s2 ~)2"J ' (7a) 

The integrals J~(3) and their recurrence relations are also given in [2]. Because of a 
numerical instability in the recurrent calculations of Jk, eq. (7a) has to be replaced in some 
cases by an expression corresponding to the form below (eq. (8)) as justified in [2]. 

Further, in Weissinger's lifting-line theory integrals of the form 

f l  m+l ]~0 m+l 
f(r/ ')dr/ '= E d,f(rl,); f (q ' )dr f= r, d,f(q,) (8) 

i=1 -1 i=1 
are needed with f(r/') representing the behavior of 7(q') within the interval. Employing again 
the station functions in the form of eq. (5) instead of eq. (4) we obtain the coefficients 

di = sin(2m + 1)3i (i,,+2(3i) _ Im(3i)). (8a) 
2(2m + 3) 
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Figure 1. Comparison of computation time for different quadrature methods applied to Weissinger's lifting line 
theory. 
Figure 1 shows a comparison of computer time (CPU-time) for generating and solving the 
resulting system of linear equations (solution with the aid of a Gaussian elimination 
process). For higher numbers of spanwise stations the modified procedure presented above 
saves considerable amounts of computation time in relation to the original method [2] since 
the time for generating the coefficient matrix increases only proportional t o  (m + 1)2. By 
introduction of this new procedure no loss of accuracy could be observed. Compared with 
Multhopp's quadrature [1] method with the same number of stations per half span the 
calculation time increases only by about 20 percent while all advantages of van de Vooren's 
method discussed in [2] are maintained. 

Moreover, in lifting-surface theory also the integrals 
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occur. The first one can be treated in a similar manner as integral (1). The second one 
includes a logarithmic singularity within the integrand for q' = ~/~ which can be splitted by 
setting 

(9c) 

The first integral on the right-hand side of eq. (9c) can be evaluated analytically while in the 
second term the quadrature can be carried out in accordance to eqs. (8) and (8a) without a 
noticeable loss of accuracy as shown in [4] for an analogous case. Therefore the method is 
also applicable in lifting-surface theory. 

Furthermore, two methods alternative to Multhopp's and van de Vooren's procedure can 
be stated which make use of Chebyshev polynomials of the first kind in r/instead of the 
second kind, i.e. cosine series in 3 instead of sine series. The condition of vanishing 7 at the 
wing tip can be taken into account by splitting in the following manner 

A procedure analogous to [2] yields for f(~/) the interpolation functions 

with 

(11) 

for a quadrature over the whole span (corresponding to eq. (10a)) and 

with 

(12) 
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Figure 2. Comparison of convergence for different quadrature methods applied to Weissinger's lifting line theory 
( A = aspect ratio). 

for a quadrature over the half span (corresponding to eq. (10b)). The derivation of eq. (12) is 
given in detail in [5]. The application of this interpolation methods to lifting-line theory 
leads to only slightly more complicated formulae compared with those given above. The 
accuracy is as good as in the corresponding cases [1, 2] and the computation time equals 
almost exactly that for the "advanced van de Vooren method" discussed above. 

Figure 2 shows for an arrow wing the comparison of the convergence behavior with 
increasing number of stations for three quadrature methods, namely the modified van de 
Vooren method (see eqs. (3) to (8a); convergence identical with van de Vooren's original 
procedure), the method connected with eq. (12), and Multhopp's method. Only small 
differences can be observed between the results of the different procedures for the lift 
gradient CL= and for the induced drag Cola 2 but a more pronounced variation exists for the 
drag parameter Coi/(C2/(gA)). Multhopp's method is inferior to both other methods since 
the behavior of the spanwise loading near r /=  0 for arrow wings cannot be described as well 
as by both other methods (see also [2]). But both other methods are equivalent with respect 
to economy and accuracy and it depends on other criteria which of them should be chosen 
for a special case. 

However, advantages of the methods connected with eqs. (11) and (12) are the following 
facts: 

1. The utmost spanwise station is situated closer to the wing tip since its distance in 0 from 
the tip is only a half interval. 
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2. The  accuracy in the vicinity of the tips is increased. This follows f rom the approx imat ion  
proper ty  of o r thogona l  polynomials  ~0. of degree n ([6]): 

f f  g(x) OC(x) - q~,(x))2 dx = min imum (13) 

with f ( x )  denoting the function to be approx ima ted  within the interval a _< x _< b and 
g(x) being a weighting function which results f rom the or thogonal i ty  relation. E.g. the 

approx imat ion  functions (12) cor respond  to 

1 
g(r/) - for 0 < q < 1 

instead of 

gO/) 

for van de Vooren 's  me thod  and therefore the accuracy is increased at the tip (~/~ 1) with 
regard to eq. (13). 

3. These methods  are capable  to fulfil ano ther  bounda ry  condi t ion at the wing tip, namely 
nonvanishing ),(~/= 1) which e.g. is valid at endplates.  

Hence for special purposes  these methods  m a y  be preferred to the classical ones [1, 2]. 
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